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CONTROL OF THE TEMPERATURE REGIME IN ALAYER OF HEAT- 

CONDUCTING MATERIAL 

A. K. Sin i t syn  and V. A. Novlkov UDC 536.24.02 

The a r t i c l e  p resen t s  the so lu t i on  of  the problem of finding the optimum con t ro l l i ng  
�9 heat  f lux  on the boundary of  a plane heat-conduct ing p l a t e  ensuring s t a b i l i z a t i o n  

of  the temperature in the s p e c i f i e d  s ec t i on  with known d i s tu rb ing  heat  f lux  on the 
o ther  boundary. 

We a re  concerned wi th  an i n f i n i t e  plane p l a t e  with th ickness  d, with  the heat  f l u x  z ( t )  
being s p e c i f i e d  on one of i t s  boundaries .  We have to f ind  such a heat  f lux  u ( t )  on the other  
boundary tha t  in the s p e c i f i e d  s e c t i o n  xoE[O, d] the r e g u l a r i t y  of change of  temperature y ( t )  
i s  ensured. 

In dimensionless  form the problem i s  descr ibed  by the one-dimensional hea t -conduct ion  
equation 

ao o~o 
ot Ox2 (1) 

with boundary condi t ions  of  the second kind 

O01Ox x=o = z(t); O~-x]x=a = u(t), t>/O, (2) 

the initial condition 

and the condi t ion  

Olt<o = Oo (x) 

o~=~. = y (t), t > / o ,  xo E [o, ~1. 

(3) 

(4) 

In a fairly similar statement Kuznetsov [i] investigated the problem of stabilization 
e(xo, t) without disturbing effect z(t). Stated somewhat similarly, the authors of [2, 3] 
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a l s o  examined the  problem but  i t  was i m p o s s i b l e  to  modify  the  methods of  s o l u t i o n  p r e s e n t e d  
by the  a u t h o r s  to  app ly  to  t h e  problem i n  q u e s t i o n .  

Most s i m i l a r  to  the  problem under  examinat ion  i s  t he  approach os [4-&] where from the  
v a l u e  O(Xo, t )  measured in  Xo the  h e a t  f l u x  u ( t )  has to  be  determined on c o n d i t i o n  t h a t  t he  
hea t  f l u x  z ( t )  i s  known or  a c c u r a t e l y  measured.  These  a u t h o r s  exp la ined  in  d e t a i l  the  me- 
thod of  so lv ing  l i n e a r  as  w e l l  as  n o n l i n e a r  [7] problems of  t h i s  type .  T ~ s e  problems may 
be c l a s s e d  as  i d e n t i f i c a t i o n  o f  f u n c t i o n a l  dependences i n a c c e s s i b l e  to  messurement,  and t h e i r  
s o l u t i o n  i s  compl ica ted  p r i m a r i l y  because  of  the  e r r o r s  of  measurement an~ the  e r r o r s  o f  
numer ica l  s o l u t i o n ,  reduc ing  such problems to  Hadmmard's i l l - p o s e d  problems [8] .  I t  i s  im- 
p o r t a n t  he re  t h a t  when t h e r e  a r e  no e r r o r s  of  measurement,  the  f u n c t i o n s  O(Xo, t )  and z ( t )  
always belong to  the  c l a s s  o f  t hose  f u n c t i o n s  f o r  which the  s o l u t i o n  u ( t )  o f  Eq. (1) e x i s t s  
unambiguously and be longs  to  the  c l a s s  o f  p h y s i c a l l y  r e a l i z a b l e  f u n c t i o n s .  

The problam so lved  in  t h e  p r e s e n t  work d i f f e r s  f i r s t  of  a l l  by the  f a c t  t h a t  i n  the  
g e n e r a l  c a se  z ( t )  be longs  to  the  c l a s s  of  f u n c t i o n s  f o r  which c o n t r o l  o f  u ( t ) n e e d  no t  e x i s t .  
In  t h a t  case  we must speak of  such a u ( t )  which would ensure  the  minimum of  some s e l e c t e d  
f u n c t i o n a l .  

A problem s i m i l a r  to  the  s t a t e d  one was a l s o  examined in  [9] where in  p r i n c i p l e  the  
au tho r s  reduced i t  to  the  p r e v i o u s l y  mentioned problems of  i d e n t i f i c a t i o n ,  bu t  they  so lved  
i t  i n  d i s t i n c t i o n  tO [4] by a more l a b o r i o u s  and l e s s  u n i v e r s a l  method. 

Applying the  c o s i n e  t rans form to  bo th  s i d e s  of  Eq. (1) ,  we o b t a i n  

00.~(t)  = 2 [ ( _  l )nu(t) .z( t) l_n~O.~(t) ,  (5) 
at z 

where 

0 

We t a k e  the  Lap l ace  : t r ans fo rm from e x p r e s s i o n  (5 ) ,  and expres s ing  0no(P) through the  o t h e r  
pa ramete r s ,  we o b t a i n :  

? ,, 

o.~(p) = ( "  1)"u(P)" z(p) + o.o (o) 
p + n  ~ 

The c o s i n e  s e r i e s  f o r  O(x, p) can be  w r i t t e n  v i a  the  v a l u e s  of  0no(P) in  the  form 

O(x, p) Ooe (p)2 ~-~n=t Or,~(p)cos(nx) = 2 s~--~ ~/:p- ~ (xV-~-z(p)ch[(~-x)V'-pll+~(p), 

(6) 

where 

~(p)= ooo(o) 
2p 

On~ (o) ~- ~ cos (nx). 
n=1 P + n z 

We now express  the  boundary c o n t r o l  u(p)  through y ( p ) ,  ' z ( p ) ,  and Y(p)s t ak ing  c o n d i t i o n  (4) . 
i n t o  account :  

u(P) = eh(x.V~ (p)chl(~-x.)V'pl + Y(P)--~(P) sh(~I/~ . (7) 
/ :~lp 

I f  Oo(x) = eo = o o n s t ,  then u = Co/p, and the  i n t r o d u c t i o n  of  the  new f u n c t i o n  ~ ( t )  - yCt) 
~-90 l e a d s  to  the  e x c l u s i o n  of  the  i n i t i a l  d i s t r i b u t i o n  e@. Hence fo r th  we w i l l  t ake  i t  t h a t  
y~'t) =-O, i . e . ,  

ch[(~-- x) V ~ =  z(p)K~(xo, p). (S) 
u (p) = z (p) ch (x Vp3 
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The s o l u t i o n  of  Eq. (8) in  the  domain of  the  o r i g i n a l  ensu res  t h a t  the  t empera tu re  
0(Xo, t) ~ 0 is maintained. Thus, the prbblem of stabilizing 0(Xo, t) reduces to  the 
determination of the inverse Laplace transform from expression (8). For Xoe[~/2, W] this 
problem is unambiguously solvable and requires either inversion of expression (8), i f  z(p) 
is specified in the domain of the transform, or calculation of the integral of the convolu- 
t i o n  

t 

u (t) = .I z (r) K~ (~,  t - -  r) dr, Xo E [~/2, n], 
0 

if z(t) i s  s p e c i f i e d  in the domain of the original. 

ula 

(9) 

The Green f u n c t i o n  Kz(Xo, t )  i s  expressed  a n a l y t i c a l l y  from Kz(X@, p) [10] by the  form- 

Kz(xo, 0 = L-'[ ch[(~-x~ ] 
L ~h(~oV~ J 

=L-,[chI(a--v)V'-~ 3 I a 
ch (a V '~  = a oh, 

,o_, 
a~ llo<.<~o ' 

oo 

where #s(x, x) = 2~ ei=~(~+~ l)~x) is Jacobi's theta function [II]. 
k=O. 

of (i0) we obtain for Kz(yo, t): 

Kz(xo, l)= -T~ (2k + l)sin ~2 e-( 2-~o (2A+,,)2, x~ k=o ~ (2k 4- 1) ; 

(10) 

On the  b a s i s  

(11) 

In the  s p e c i a l  case  f o r  Xo = w/2--Kz(Xo , t )  ~ 1, i . e . ,  u ( t )  ~ z ( t ) .  For Xo < w/2 an i n v e r s e  
t rans form of  K_(xo, p) does no t  e x i s t ,  and in  such a c a s e  u ( t )  can be  determined from the  
solution of Vo~terra's integral equation of the first kind with the kernel K(t, 3) = K(t--3) 
[12]: 

t 

z (t) = ~ K~ (~ - -  ~ ,  t - -  ~)u (r) dr = A (~,  u (t)), xo E [0, ~/2), (12) 
0 

where Kz(~--xo , t - - 3 )  i s  t he  k e r n e l  of  t he  i n t e g r a l  t r ans form cor respond ing  to  e x p r e s s i o n  
(11) .  I t  i s  known [8, 12, 13] t h a t  the  equa t i on  i n  q u e s t i o n  r e q u i r e s  r e g u l a r i z i n g  a lgor i thm 
[14] to  be  adv i sed .  I t  was po in t ed  ou t  above t h a t  i n  the  g e n e r a l  ease  the  hea t  f l u x  z ( t )  
belongs to the class of functions for which a solution u(t)~C of Eq. (12) does not exist. 
In this case we may speak of a solution u~t) for Eq. (12) only when the problem is stated In 
variational form for minimization of the quadratic functional 

[A(~, u(t))--z* (t--ir)]~t = min, (13) 
0 

where 

z* (u) = {z (y), y > /0 ,  
0 y < 0 ;  

3 I s  the  d e l a y  of  the  c o n t r o l l i n g  f l u x  u ( t )  r e l a t i v e  to  the  "ze ro"  of  the  f l u x  z ( t ) .  

The existence of the delay 3 in the functional (13) must not be viewed as a purely arti- 
ficial shift of the disturbance z(t) along the time axis by the time 3" > topt, and a new 
disturbance z*(t)cannot be taken, for which with t < 3" z*(t) - 0. In the investigated 
class of problems the delay 3" has to be infinite in principle for attaining the absolute 
"minimum" of the functional (13); in this sense it is in general analogous to the regulariza- 
tion parameter in inverse problems where the "best" solution of theproblem is attained when 
it is equal to zero. Insignificant deviations of the functional (13) for 3 �9 3o. t have to 
correspond to the optimum value 3o. t whereas insignificant deviations of the fo~ of the con- 
trolling action u(t) for 3 < 3or t have to correspond to To. t. In the present work 3op t was 
chosen in particular on the baals of such considerations. 
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Ne w i l l  minimize the  f u n c t i o n a l  (13) fo r  u ( t )  be longing to the c l a e a o f  f u n c t i o n s  such 
t h a t  

urn,. (t) ~ u (t) ~ umax (t). 
, .  . , (14) 

Ne point out that for the correctness of the problem of minimizing the functional (13), con- 
d i t i o n  (14) i s  i n d i s p e n s a b l e .  In  the  i n t e r v a l  [0, T] we cake a uniform gr id  wi th  the  number 
os d i v i s i o n s  n T and a s tep  AT - T/n T. We de termine  the  number of  d i v i s i o n s  fo r  the  time of 
de lay  x by the  exp re s s ion  

n, = + I ,  (151 

and we denote  the  t o t a l  n, mber of  d i v i s i o n s  i n  the  i n t e r v a l  [0, T + x] by N = n T + n x. We 
w i l l  seek the  s o l u t i o n  u ( t )  i n  the  form of  p i e c e w i s e - c o n s t a n t  f u n c t i o n s ,  such t h a t  

u~ = u (t E (at  (i - I), ati)) .  

We w i l l  approximate the  i n t e g r a l s  con ta ined  in  (13) by quadra tu re  formulas  us ing  the 
va lue s  i n  the  i - t h  nodes of  the  g r i d .  As a r e s u l t  of  ob t a in  a problem o f  min imiza t ion  in  
q u a d r a t i c  form 

, = ,  a, [i~= K1u,_i+ , - -  --- min, (16) 

where 

KI I 
/At 

t" K('Od'q z ~ - z * ( t i - - ~ ) ~  , i<n~,  
(i~Dat 

{ 1 , i= /=l ,N ,  
a~--- I/2, i - - - l ,  N. 

The f u n c t i o n a l  (16) may be w r i t t e n  i n  ma t r ix  form: 

I /2UT A*U-- Ur B -----rain, 
(17 )  

where 

N--i-I- I 

n=l--b'[- I 

N 

B ~ - -  ~, a.+~_,  K . - i + ~  z* ,  U r "= [ u .  u~, u~, . . .  , 
n = i  

UN]. 

The ma t r i x  A* i n  t h e q u a d r a t i c  form (17) i s  p o s i t i v e l y  determined [15]; t h i s  fo l lows  from 
a comparison of  (17) and (16).  However, f o r  a c e r t a i n  kind of  dependence of  the  k e r n e l  K(t)  
the  ma t r i x  A* may be c l o s e  to  degene ra t e ,  and the  problem of  minimizing the  q u a d r a t i c  form 
(17) wi l l  be i l l - p o s e d  because of  e r r o r s  of  c a l c u l a t i o n  in  t h e a l g o r i t h m  f o r  min imiza t ion .  ~ 
For r e g u l a r i z a t i o n  o f  problem (17) we use the  Tikhonov s t a b i l i z e r  ~n(U(t) )  f o r  n - 0 ensu r -  
ing weak r e g u l a r t z a t t o n  [13],  and wi th  i t  t aken  i n t o  accoun t ,  the  q u a d r a t i c  form of  (17) 
then appears  as 

I/2UZAU.-U r B----min, 

where A - A* + aE, a i s  the  parameter  of  weak r e g u l a r i z a t i o n .  The q u a d r a t i c  form of (18) 
has to  be minimized wi th  r e s p e c t  to  the  v e c t o r  U wi th  the  c o n s t r a i n t s  

( l s )  

(19),  
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ensuing from the equality (14), where 

T �9 U N m i n ] ,  U T a x - - - - - l l / l m a x ,  U 2 m a x ,  . .  U N m a x ] .  V m i n - - - ' - - [ u l m i n ,  / ' /~ 'min, ' '  , �9 , 

The pa rame te r  a i s  chosen on the  b a s i s  o f  the  r equ i r emen t  of  ensu r ing  p o s i t i v e  d e t e r -  
minacy of  the  m a t r i x  A in  the  count .  

The problem of minimiz ing  the  q u a d r a t i c  form (18) wi th  c o n s t r a i n t s  type  (19) and a 
positively determined matrix A is a problem of quadratic progrmm, lng [16] which can be 
solved by the method of Lagrange multipliers [15]. The Lagrange function for (18) has the 
form 

/ 
L(U, ~,)= -" Ur A u - - u r B + ~ , r  (D--CU) ,  

2 (20) 

where i is the vector of the Lagrange multipliers, l i ~ / O ;  D, C are obtained from the con- 
straints (19): D T = [U T_ --U~ax] , C T = [E, --El, E is the unlque diagonal matrix of dimen- mln 
sionality N. 

The solution of problem (18) is the saddle point (U*, A*) of the Lagrange function (20) 
satisfying the system of equations [16]: 

CU* >/D; ~* >/0; A U * - -  B = crx  * 

with the conditions of complementariness 

•* ((CU*)i--Di) = O, i = 1, 2, . . .  , N. 

(21) 

The algorithm for seeking the saddle point of the Lagrange function in the given problem 
is greatly simplified because of the singular types of matrices D, C, and it reduces to the 
algorithm presented below. 

We assmne that in U we distinguish two sets: the set of "removals" U-, consisting of the 
�9 components of the vector U for which 

ui---(Uimax U U~min), (22) 

and the  s e t  of  " i n c l u s i o n s "  U + c o n s i s t i n g  o f  the  components remaining i n  U a f t e r  f o rma t ion  
of the set U-, for which 

Uimin < Ui < U/max. (23) 

Expressions (22), (23) are analogous to the conditions of complementariness of the system 
(2D. 

The algorit~ for seeking the saddle point consists in the successive verification whe- 
ther the sets U + and U- contain certain conditions. For the set U + we find the solutlon ~ + 
of the system of equations 

A+V§ = m, (24) 

where the  m a t r i c e s  A +, B + wer~ ob t a i ned  from A, B by removing the  rows co r r e spond ing  to  the  
s e t  U-. A f t e r  de t e r mi n i ng  IY , we f i n d  the  v e c t o r  6 each of  whose components i s  de te rmined  
by the  e x p r e s s i o n  

I f  among the  components of  the  v e c t o r  6 t h e r e  a r e  v a l u e s  ~i  < 1, the  v a l u e  r = m/in 6 i i s  
a l s o  sought ,  and to  o b t a i n  the  new s e t  U + the  f o l l o w i n g  r e l a x a t i o n  i s  e f f e c t ~ d :  

U +: = (U + - U  +)~ + U +, 

whereupon the element j is transferred from the set U § to the set U-, and for the new set 
U + the system of equations (24) is again~ solved. 
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Fig. 1. Time dependences of the optimal 
con t ro l l i ng  f luxes  u ( t ) :  a) z ( t )  ffi a t  for  
a equal tot 1) 0.68; 2) 0.4; 3 ) 0 . 2 ;  4) 
0.08; b) z ( t )  ffi 0.68t with d i f f e r e n t  va l -  
ues of umax: 1) 16; 2) 10; 3) 6; c) z ( t )  = 1 
for  d i f f e r e n t  Umax: 1) 1; 2) 2; 3) 3; 4) 4. 

When the condition V~i~l for elements of the vector d is fulfilled, 
t e s ted  according to the condi t ions  

(A-U)i < Bi : u'( = U~ma~, 

( A - U h  >t Bi : u-;" = u~mi,, 

the set U- is 

(25) 

which correspond to the third equation of system (21). If the conditions (25) are not ful- 
filled for the subscript i, then the corresponding i-th element is transferred from U- to U +, 
and then the set U + is analyzed. When conditions (25) are fulfilled for vul, then the ob- 
tained sets U + and U- are the solution of the problem of minimization of the quadratic form 
(18) with the constraints (19). 

The presented algorithm is distinguished by the slmplicity of its realization and highly 
rapid effect. Like with any problem of regularization, the efficiency of the algorithm de- 
pends on the correct selection of the parameter , of the Tikhonov stabilizer ~e(u(t)). 

The realization of the presented algorithm for minimizing the functional (13) with the 
constraints (14) was effected in FORTRAN for a BESM-6 computer. With the aid of the program 
the controlling flux u(t) with disturbing flux z(t), corresponding to the expression z(t) = 
at, t 90, for different values of a, was sought. 

The constraints (14) for u(t) were taken for Uml n (t) = Umi n = coast and Urea x (t) = Umax = 
const. The graphs of the dependence u(t) for xo = 0, u = var, Umi n ffi --5, Umax = + 5 are 
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shown in Fig. la, and of the dependence u(t) for a ffi 0.68, Uml n ffi --5, x@ = 0, Uma x = vat 
in Fig. lb. 

It can be seen from the presented graphs that for u(t) there takes place a forced re- 
gime in which "acceleration' of the system and then its "braking" is ensured. In the forced 
regime the shape of u(t) is decisively affected by the values Umax, umi n on which the magni- 
tude of the delay T and the discrepancy ]IA (Xo, u(t))-z(t)llC depend; for the specified 
z(t) the maximum discrepancy occurs for t = 0. We point out that for the problem under 
examination, there may be no forced regime only when the disturbance z(t) is specified such 
that for it all derivatives up to the infinite one exist on the segment t ffi 0. It should be 
expected that the forced regime will be hardest when z(t) has discontinuities of the first 
kind, and ~nparticular, when the disturbance z(t) changes Jumplike from zero to Zma x in such 
a way that z(t) = Zma x for t~ 0. It is characteristic that for similar disturbances we have 
to determine most often only the quasioptimal control of u(t) ensuring that 

I IA (Xo, u (t)) - -  z (t)l lLi ~ 

on condition that 

llu (t t ~) - -  z (t)llc = rnin,  

(26) 

(27) 

andthat the time of delay T in principle is not bounded. In Fig. le there are illustrated 
several controls u(t) for z(t) =i, t < 0, distinguished by the constraint of Uma x. The selection 
of the corresponding regularity u(t) depends on the value of 7 in the condition (26), and 
then (27) is automatlcally fulfilled. We point out that with large values of 7, the control 
u(t) repeats the regularlty of the change z(t) with the delay T (r e 4 in Fig. lc). 

The suggested algorlt~, and most importantly ' the devised program may be used for a 
large range of problems of similar type without any substantial alterations. In particular, 
Eq. (1) may be replaced by a similar equation in cylindrical coordinates, and also the 
boundary conditions (2) may be of the first or third kind. At the same time the Green func i 
tlon Kz(x@, t), which is analogous to (10), can be obtained both analytlcally and by the 
known numerical methods. 

NOTATION 

0, temperature; L -~, inverse Laplace transform~A (...), linear transform; L(u, A), 
Lagrange function; i, vector of the Lagrange multipliers; ~n, Tikhonov stabilizer; a~ param- 
eter of weak regularlzatlon. 
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DURATION OF THE FREEZING OF BODIES WITH VARIABLE TEMPERATURE 

OF THE MEDIUM 

V. P. Koval'kov UDC 536.2 

The article contains an analysls of the applicatlon of the integral method of ther- 
mal moments of zeroth order in determining the duration of freezing of bodies with 
simple shape when the temperatures of the cooling medium is variable. 

Approximate analytical solutlons of unldimensionalStefan-type problems for determinlng 
the duratlonof processes of nonsteady heat conduction are conveniently found by uslng the 
so-called integral methods [1]. To these also belougs the method of thermal moments of 
zeroth order [2]. The application of this method to problems with phase transformations 
at constant temperature of the medium was studied, e.g., in [3, 4]. The essence of the 
method is that the initial integral relation is obtained as a result of integrating the 
principal differential equation of heat conductiontwicewith respect to the space coordin- 
ate and once with respect to time. Into this relation we then substitute the equations of 
the temperature distribution profiles (invariant to shifts of the front of phase transforma- 
tion) and the regularlty of change of the cooling (heating) impulse on the surface of the 
body, determined as the area in coordinates temperature vs time between the lines of tem- 
perature change at the end of the investigated region (body). 

The method of thermal moments of zeroth order may also be applied to determining the 
time of motion of the fronts of phase transformation in bodies of simple shape when the 
temperature of the medium is variable. Although it is expedient to use the Integral state- 
ment of the problem [4], we demonstrate below how to obtain the initial Integral relatlon 
of the thermal moments from the differential statement of the problem because the method 
itself is relatively little known. 

Let us examine the problem of the cooling of bodies with simple shape (sphere, un- 
bounded cylinder, and plate) with phase transformations 

OT (x, "c) 0 ( ~, iT) r (x) OT (x, "~) , 0 ~ x ~ I; c (T) o) (x) a ~  a-"; ax 

T (x 0) = To (x); 

OT(O, ~) -_0; 
ax 

~z ('0 (T (Z, "0 - -  T~ ('0) = - -  ,~ ( r  (l, "0) 
aT (I, "0 

0x 

( I)  

(2)  

(3)  

(4) 
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